China Hot selling Worm Screw Helical Hypoid Straight Ring Spiral Forged Bevel Spur Differential Steering Spline Plastic Nylon Stainless Steel Gear spurs gear

Product Description

 Material:

Stainless steelSS201,SS303,SS304,SS316,SS416,SS420,17-4PH,SUS440C 

AluminumAL2571,AL5754(Almg3),AL5083,AL6061,AL6063,AL5052,AL7075

Carbon steelQ235,S235JR,1571, 1015, 1571, 1571, 1030, 1035, 1040, 1045

Alloy steel40Cr,15CrMo,4140,4340,35CrMo,16MnCr5

Brass/Copper/BronzeC11000, C15710, C12000, C26000, C36000, etc.etc…

Stainless Steel (201, 302, 303, 304, 316, 420, 430) etc…

Steel (mild steel, Q235, 20#, 45#) etc…

Process:

CNC Machining, turning,milling, lathe machining, boring, grinding, drilling,broaching, stamping,etc…

Surface treatment:

Clear/color anodized; Hard anodized; Powder-coating;Sand-blasting; Painting;    

Nickel plating; Chrome plating; Zinc plating; Silver/gold plating; 

Black oxide coating, Polishing etc…

Gerenal Tolerance:(+/-mm)

Gear grade :7Gread (ISO)

Run Out:0.005mm

Roundness:0.001mm

ID/OD Grinding: 0.002

Roughness : Ra 0.05 Rz 0.2

Certification:

IATF 16949, ISO140001

Experience:

16 years of  machining products

Packaging :

Standard: carton with plastic bag protecting

For large quantity: pallet or wooden box as required

Lead time :

In general:30-60days

Term of Payment:

T/T,  L/C, etc

Minimum Order:

Comply with customer’s demand

Delivery way:

Express(DHL,Fedex, UPS,TNT,EMS), By Sea, By air, or as required

Our advantage: *Specialization in CNC formulations of high precision and high quality *Independent quality control department *Control plan and process flow sheet for each batch *Quality control in all whole production *Meeting demands even for very small quantities or single units *Short delivery times *Excellent price-quality ratio *Absolute confidentiality *Various materials (stainless steel, iron, brass, aluminum, titanium, special steels, industrial plastics)

FAQ: Q1: How can I get the samples? A: If you need some samples to test, you should pay for the transportation freight of samples and our samples cost. Q2: Can we have our marking,Logo or company name to be printed on your products or package? A: Sure. Your marking,logo,or company name can be put on your products by Laser machine Q3: How to order? A: Please send us your purchase order by Email, or you can ask us to send you a Performa invoice for your order. We need to know the following information for your order. 1) Product information-Quantity, Specification ( Size, Material, Technological and Packing requirements etc.) 2) Delivery time required 3) Shipping information-Company name, Street address, Phone&Fax number, Destination sea port. 4) Forwarder’s contact details if there’s any in China. Q4: When can you get the price? We usually quote within 48 hours after we get your inquiry. If you are very urgent to get the price, please call us or tell us in your email so that we will regard your inquiry priority. Kindly note that if your inquiry is with more details then the price we quote will be more accurate .Q5: How can you get a sample to check our quality? After price confirmation, you can require for samples to check our quality .Q6: What kind of files do we accept for drawing? A: PDF, CAD,STP,STEP Q7: What about the lead time for mass production? Honestly, it depends on the order quantity and the season you place the order. Generally speaking,it would need about 30-60days to finish the sample. Q8: What is our terms of delivery? We accept EXW, FOB, CFR, CIF, DDU, DDP, etc. You can choose the 1 which is the most convenient or cost effective for you.

 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Customization:
Available

|

Customized Request

worm gear

Can worm gears be used in precision manufacturing equipment?

Yes, worm gears can be used in precision manufacturing equipment. Here’s a detailed explanation of their use in precision manufacturing:

1. Precision Motion Control: Worm gears can provide precise motion control in manufacturing equipment. Their design allows for high gear ratios, which enables fine adjustments and precise positioning. This is particularly useful in applications where accurate and repeatable movement is required, such as CNC machines, robotic arms, and coordinate measuring machines (CMMs).

2. Load Holding and Backdriving Prevention: Worm gears have a self-locking characteristic, meaning they can hold loads in position without the need for additional brakes or clutches. This feature is advantageous in precision manufacturing equipment where holding a position is critical. The self-locking property also helps prevent backdriving, ensuring stability and accuracy during operation.

3. Compact Design: Worm gears have a compact design, which can be beneficial in space-constrained manufacturing equipment. Their worm and worm wheel configuration allows for a compact footprint, making them suitable for applications where size limitations exist.

4. High Torque Transmission: Worm gears can transmit high torque, making them suitable for heavy-duty precision manufacturing equipment. The meshing of the worm and worm wheel generates a large contact area, enabling efficient power transfer and load handling capabilities.

5. Reduced Noise and Vibration: Worm gears operate with a sliding motion rather than a rolling motion, resulting in reduced noise and vibration levels. This characteristic is advantageous in precision manufacturing equipment, as it helps maintain a quieter working environment and minimizes potential disturbances that could affect the precision of the manufacturing process.

6. Lubrication and Maintenance: Proper lubrication is crucial for the efficient and reliable operation of worm gears in precision manufacturing equipment. Lubricants help reduce friction and wear between the gear teeth, ensuring smooth and accurate motion. Regular maintenance and lubrication schedules should be followed to optimize gear performance and extend their service life.

While worm gears offer several advantages in precision manufacturing equipment, it’s important to consider the specific requirements of the application. Factors such as gear ratio, efficiency, backlash, and operating conditions should be carefully evaluated to ensure that worm gears are the appropriate choice for achieving the desired precision and performance.

Overall, worm gears can be successfully utilized in precision manufacturing equipment, providing precise motion control, load holding capabilities, compactness, and high torque transmission. When properly selected, installed, and maintained, worm gears can contribute to the accuracy, reliability, and efficiency of precision manufacturing processes.

worm gear

What are the environmental considerations when using worm gears?

When using worm gears, there are several environmental considerations to keep in mind. Here’s a detailed explanation of these considerations:

  1. Lubrication: Proper lubrication is essential for the efficient and reliable operation of worm gears. Lubricants help reduce friction and wear between the gear teeth, resulting in improved efficiency and extended gear life. When selecting lubricants, it is important to consider their environmental impact. Environmentally friendly lubricants, such as biodegradable or synthetic lubricants with low toxicity, can be used to minimize the potential harm to the environment in case of leakage or accidental spills.
  2. Leakage and contamination: Worm gear systems are susceptible to lubricant leakage, which can cause environmental pollution. It is important to ensure that the gear housing is properly sealed to prevent lubricant leakage into the environment. Regular inspections and maintenance should be carried out to detect and repair any leaks promptly. Additionally, measures should be taken to prevent contaminants such as dust, dirt, and water from entering the gear system, as they can degrade the lubricant and affect the gear performance.
  3. Energy efficiency: Worm gears, like any mechanical power transmission system, consume energy during operation. It is important to consider energy efficiency when selecting and designing worm gear systems. Optimal gear design, proper gear selection, and efficient lubrication practices can contribute to reducing energy consumption and minimizing the environmental impact associated with energy use.
  4. Noise and vibration: Worm gears can generate noise and vibration during operation. Excessive noise can contribute to noise pollution, while high vibration levels can impact the surrounding equipment and structures. To mitigate these effects, it is important to design and manufacture worm gears with low noise and vibration characteristics. This can involve careful gear design, proper lubrication, and the use of vibration-damping materials or mechanisms.
  5. End-of-life considerations: At the end of their service life, worm gear components may need to be replaced or recycled. Disposal of worn-out gears should be done in accordance with applicable environmental regulations. Whenever possible, recycling or reusing gear components can help reduce waste and minimize the environmental impact associated with the disposal of gear materials.
  6. Environmental regulations: Compliance with environmental regulations and standards is crucial when using worm gears. Different regions may have specific regulations governing the use and disposal of lubricants, materials, and manufacturing processes associated with gear systems. It is important to stay informed about these regulations and ensure compliance to avoid any adverse environmental impact and legal consequences.

By considering these environmental factors, it is possible to minimize the ecological footprint of worm gear systems and promote sustainable practices in their use and maintenance. This includes selecting environmentally friendly lubricants, implementing proper sealing and maintenance procedures, optimizing energy efficiency, and adhering to relevant environmental regulations.

worm gear

Can you explain the concept of worm and worm wheel in a worm gear?

In a worm gear system, the worm and worm wheel are the two primary components that work together to transmit motion and power. Here’s an explanation of the concept:

Worm:

The worm is a cylindrical shaft with a helical thread wrapped around it. It resembles a screw with a spiral groove. The helical thread is called the worm’s thread or worm thread. The worm is the driving component in the worm gear system.

When the worm rotates, the helical thread engages with the teeth of the worm wheel, causing the worm wheel to rotate. The angle of the helical thread creates a wedging action against the teeth of the worm wheel, resulting in a high gear reduction ratio.

One important characteristic of the worm is its self-locking nature. Due to the angle of the helical thread, the worm can drive the worm wheel, but the reverse is not true. The self-locking feature prevents the worm wheel from backdriving the worm, providing a mechanical brake or holding position in the system.

The worm can be made from various materials such as steel, bronze, or even plastics, depending on the application requirements. It is often mounted on a shaft and supported by bearings for smooth rotation.

Worm Wheel:

The worm wheel, also known as the worm gear, is the driven component in the worm gear system. It is a gear with teeth that mesh with the helical thread of the worm. The teeth on the worm wheel are typically helical and cut to match the angle and pitch of the worm’s thread.

As the worm rotates, its helical thread engages with the teeth of the worm wheel, causing the worm wheel to rotate. The rotation of the worm wheel is in the same direction as the worm’s rotation, but the speed is significantly reduced due to the high gear reduction ratio of the worm gear system.

The worm wheel is usually larger in diameter compared to the worm, allowing for a higher gear reduction ratio. It can be made from materials such as steel, bronze, or cast iron, depending on the application’s torque and durability requirements.

Together, the worm and worm wheel form a compact and efficient gear system that provides high gear reduction and self-locking capabilities. They are commonly used in various applications where precise motion control, high torque, and compactness are required, such as elevators, steering systems, and machine tools.

China Hot selling Worm Screw Helical Hypoid Straight Ring Spiral Forged Bevel Spur Differential Steering Spline Plastic Nylon Stainless Steel Gear spurs gearChina Hot selling Worm Screw Helical Hypoid Straight Ring Spiral Forged Bevel Spur Differential Steering Spline Plastic Nylon Stainless Steel Gear spurs gear
editor by CX 2023-09-12

Leave a Reply

Your email address will not be published. Required fields are marked *