China manufacturer Worm Gears 9 Inch Used for Truck Cranes Construction Machinery manufacturer

Product Description

Type: 9 inch slewing drive

Feature:
1. Tooth type: Worm tooth
2. Medium-load slewing drive
3. Drive type: Hydraulic drive
4. Diameter of rotary center: 342mm

Other technical data:
Module: 5
Number of worm shafts: 1
Gear Ratio: 61: 1
Efficiency: 40%
Self-locking gears: YES
Weight: 49kg

Output Torque: 8.5KNm
Backwards Holding Torque: 38.7KNm
Tilting Moment: 33.9KNm
Radial static load rating: 135KN
Axial static load rating: 338KN
Radial dynamic load rating: 71KN
Axial dynamic load rating: 81KN

Detailed technical data please kindly contact us directly.

Slewing drive
1. Introduction of CHINAMFG slewing drive
Slewing Drive is also called slewing gear, worm gear, worm drive, rotary drive axle, rotary drive vice, slew drive, worm gear reducer and rotary drive unit. At present the majority of such devices are caller Slewing Drive.
LYHY Slewing Drive movement can reduce power consumption, since the security role. In addition to the field of use in the daily solar power systems are usually used for Special vehicle, heavy-duty flat-panel truck, container cranes, truck mounted crane, automobile crane and aerial vehicles, cranes, gantry cranes, small wind power stations, space communications, satellite receiver, etc…The Slewing Drive in the solar photovoltaic industry, the general configuration DC planetary reduction motor or AC geared motors; Main configuration of the hydraulic motor as a power-driven construction machinery
LYHY Slewing Drive principle of the large transmission ratio of the deceleration device to transmit motion and power between the 2 axes staggered in space. The Slewing Drive transmission is usually the case of the main components of the worm and wheel bearings, shell, and the power source
As the core component of turntable bearings, can withstand the axial load, radial load and overturning moment.

2. Structure
Slewing drive can be divided into 2 different structures as per different applications.
Light load slewing drive
Heavy load slewing drive
The dimensions of slewing drives include 3 inch, 5 inch, 7 inch, 9 inch, 12 inch, 14 inch, 17 inch, 21 inch and 25 inch.

3. Features:
Slewing drive is a special bearing. And a slewing drive usually consist of slewing bearing, worm shaft, housing, bearing, motor and so on. Motor drive the worm shaft, the outer ring of slewing bearing will rotate, the outer ring output the torque through flange while the inner ring of slewing bearing is fixed in housing.
LYHY Slewing Drive and rotary products, compared with the ease of installation, ease of maintenance, Installation space savings advantages to a greater extent.

4. Application:
Slewing drives are widely used in aerospace area, solar power systems, wind turbines, satellite broadcasting system, and engineering machinery like truck cranes, and man lifts, etc. Recently years, it has been prosperously used in photovoltaic power generation systems, special vehicle, heavy-duty flat-panel truck, container cranes, truck mounted crane, automobile crane and aerial vehicles, cranes, gantry cranes, small wind power stations, space communications, satellite receiver, etc.

 Light-load Slewing Drive
Model Rated output torque /KN-m Tilting Moment torque /KN-m Load /KN Gear ratio Self-locking gears Boundary dimensions (mm) Weight (KG)
Static load rating, axial Static load rating,radial Dynamic load rating, axial Dynamic load rating,radial L L1 L2 L3 H2 H3 H4 ΦD ΦD1 ΦD2 ΦD3 ΦD4 ΦD5 n1-Y n1-X H H1
3″ 0.2 0.5 30 16.6 9.6 8.4 62:1 yes 346 153 114 80   14.5 60.5 125 100   100   126 6-M10 6-M10 190 109 12
5″ 0.3 0.8 76 22.6 13.8 11.8 62:1 yes 361 168 128 93.7 24.6 7 38 161 135 103.5 70 50 120 6-M10 7-M10 219 79 18
7″ 1 13.5 133 53 32 28 73:1 yes 398 182 166 132.7 23.4 4.3 42.5 237.5 203.2 163 120.6 98 145 8-M12 10-M12 295 81 23
9″ 7.3 33.9 338 135 81 71 61:1 yes 546 314 239 174.1 29 4.4 54.5 316 270 222.5 175 145 204 16-M16 15-M16 411 108 50
12″ 9.2 54.3 475 190 114 100 78:1 yes 556 324 285 220 27 4.4 58.5 401.5 358 308.5 259 229 289 18-M16 19-M16 500 110.5 60
14″ 10.5 67.8 555 222 133 117 85:1 yes 547 330 303 238 28 3.5 59 435.5 390 342.5 295 265 325 18-M16 23-M16 530 110 73
17″ 14.5 135.6 975 390 235 205 102:1 yes 555 338 340 275.3 26 4.6 66 522 479.4 425.5 365.1 324 406 20-M16 20-M16 615 126 110
21″ 20.2 203 1598 640 385 335 125:1 yes 678 461 398 333 3.3 4.5 76 616 584.2 525.5 466.7 431.8 532 36-M20 35-M20 732 136.5 158
25″ 22.5 271 2360 945 590 470 150:1 Yes 678 461 467 401.8 6.2 4.5 78.2 744 675 620 585 512 628.5 36-M20 35-M20 863 133.2 230
Heavy-load slewing drive
Model Rated output torque /KN-m Tilting Moment torque /KN-m Load /KN Gear ratio Self-locking gears Boundary dimensions (mm) Weight (KG)
Static load rating, axial Static load rating,radial Dynamic load rating, axial Dynamic load rating,radial L L1 L2 L3 H2 H3 H4 ΦD ΦD1 ΦD2 ΦD3 ΦD4 ΦD5 n1-Y n1-X H H1
3″ 0.25 0.5 30 16.6 9.6 8.4 62:1 yes 346 153 114 80   14.5 60.5 125 100   100   126 6-M10 6-M10 190 109 12
5″ 0.37 0.8 76 22.6 13.8 11.8 62:1 yes 361 168 128 93.7 24.6 7 38 161 135 103.5 70 50 120 6-M10 7-M10 219 79 18
7″ 1.3 13.5 133 53 32 28 73:1 yes 398 182 166 132.7 23.4 4.3 42.5 237.5 203.2 163 120.6 98 145 8-M12 10-M12 295 81 23
9″ 9.2 33.9 338 135 81 71 61:1 yes 546 314 239 174.1 29 4.4 54.5 316 270 222.5 175 145 204 16-M16 15-M16 411 108 50
12″ 11.7 54.3 475 190 114 100 78:1 yes 556 324 285 220 27 4.4 58.5 401.5 358 308.5 259 229 289 18-M16 19-M16 500 110.5 60
14″ 12.7 67.8 555 222 133 117 85:1 yes 547 330 303 238 28 3.5 59 435.5 390 342.5 295 265 325 18-M16 23-M16 530 110 73
17″ 18.5 135.6 975 390 235 205 102:1 yes 555 338 340 275.3 26 4.6 66 522 479.4 425.5 365.1 324 406 20-M16 20-M16 615 126 110
21″ 29 203 1598 640 385 335 125:1 yes 678 461 398 333 3.3 4.5 76 616 584.2 525.5 466.7 431.8 532 36-M20 35-M20 732 136.5 158
25″ 34 271 2360 945 590 470 150:1 yes 678 461 467 401.8 6.2 4.5 78.2 744 675 820 585 512 628.5 36-M20 35-M20 863 133.2 230

Feature: Corrosion-Resistant
Step: Double-Step
Layout: Cycloidal
Type: M14 Inch Slewing Drive
Size: 14 Inch
Warranty Period: 1 Year
Samples:
US$ 620/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

worm gear

Are worm gears suitable for high-torque applications?

Worm gears are indeed well-suited for high-torque applications. Here’s a detailed explanation of why worm gears are suitable for high-torque applications:

Worm gears are known for their ability to provide significant speed reduction and torque multiplication. They consist of a threaded cylindrical gear, called the worm, and a toothed wheel, called the worm wheel or worm gear. The interaction between the worm and the worm wheel enables the transmission of motion and torque.

Here are the reasons why worm gears are suitable for high-torque applications:

  • High gear reduction ratio: Worm gears offer high gear reduction ratios, typically ranging from 20:1 to 300:1 or even higher. The large reduction ratio allows for a significant decrease in rotational speed while multiplying the torque output. This makes worm gears effective in applications that require high levels of torque.
  • Self-locking capability: Worm gears possess a unique self-locking property, which means they can hold position and prevent backdriving without the need for additional braking mechanisms. The angle of the worm thread creates a mechanical advantage that resists reverse rotation of the worm wheel, providing excellent self-locking characteristics. This self-locking capability makes worm gears ideal for applications where holding the load in place is crucial, such as in lifting and hoisting equipment.
  • Sturdy and robust design: Worm gears are typically constructed with durable materials, such as steel or bronze, which offer high strength and resistance to wear. This robust design enables them to handle heavy loads and transmit substantial torque without compromising their performance or longevity.
  • High shock-load resistance: Worm gears exhibit good resistance to shock loads, which are sudden or intermittent loads that exceed the normal operating conditions. The sliding contact between the worm and the worm wheel teeth allows for some degree of shock absorption, making worm gears suitable for applications that involve frequent or unexpected high-torque impacts.
  • Compact and space-efficient: Worm gears have a compact design, making them space-efficient and suitable for applications where size is a constraint. The compactness of worm gears allows for easy integration into machinery and equipment, even when there are spatial limitations.

It’s important to consider that while worm gears excel in high-torque applications, they may not be suitable for high-speed applications. The sliding contact between the worm and the worm wheel generates friction, which can lead to heat generation and reduced efficiency at high speeds. Therefore, worm gears are typically preferred in low to moderate speed applications where high torque output is required.

When selecting a worm gear for a high-torque application, it’s important to consider the specific torque requirements, operating conditions, and any additional factors such as speed, efficiency, and positional stability. Proper sizing, lubrication, and maintenance are also crucial to ensure optimal performance and longevity in high-torque applications.

worm gear

How do you address noise and vibration issues in a worm gear system?

Noise and vibration issues can arise in a worm gear system due to various factors such as misalignment, improper lubrication, gear wear, or resonance. Addressing these issues is important to ensure smooth and quiet operation of the system. Here’s a detailed explanation of how to address noise and vibration issues in a worm gear system:

1. Misalignment correction: Misalignment between the worm and the worm wheel can cause noise and vibration. Ensuring proper alignment of the gears by adjusting their positions and alignment tolerances can help reduce these issues. Precise alignment minimizes tooth contact errors and improves the meshing efficiency, resulting in reduced noise and vibration levels.

2. Lubrication optimization: Inadequate or improper lubrication can lead to increased friction and wear, resulting in noise and vibration. Using the correct lubricant with the appropriate viscosity and additives, and ensuring proper lubrication intervals, can help reduce friction and dampen vibrations. Regular lubricant analysis and replenishment can also prevent excessive wear and maintain optimal performance.

3. Gear inspection and replacement: Wear and damage to the gear teeth can contribute to noise and vibration problems. Regular inspection of the worm gear system allows for early detection of any worn or damaged teeth. Timely replacement of worn gears or damaged components helps maintain the integrity of the gear mesh and reduces noise and vibration levels.

4. Noise reduction measures: Various noise reduction measures can be implemented to minimize noise in a worm gear system. These include using noise-dampening materials or coatings, adding sound insulation or vibration-absorbing pads to the housing, and incorporating noise-reducing features in the gear design, such as profile modifications or helical teeth. These measures help attenuate noise and vibration transmission and improve overall system performance.

5. Resonance mitigation: Resonance, which occurs when the natural frequency of the system matches the excitation frequency, can amplify noise and vibration. To mitigate resonance, design modifications such as changing gear stiffness, altering the system’s natural frequencies, or adding damping elements can be considered. Analytical tools like finite element analysis (FEA) can help identify resonant frequencies and guide the design changes to reduce vibration and noise.

6. Isolation and damping: Isolation and damping techniques can be employed to minimize noise and vibration transmission to the surrounding structures. This can involve using resilient mounts or isolators to separate the gear system from the rest of the equipment or incorporating damping materials or devices within the gear housing to absorb vibrations and reduce noise propagation.

7. Tightening and securing: Loose or improperly tightened components can generate noise and vibration. Ensuring that all fasteners, bearings, and other components are properly tightened and secured eliminates sources of vibration and reduces noise. Regular inspections and maintenance should include checking for loose or worn-out parts and addressing them promptly.

Addressing noise and vibration issues in a worm gear system often requires a systematic approach that considers multiple factors. The specific measures employed may vary depending on the nature of the problem, the operating conditions, and the desired performance objectives. Collaborating with experts in gear design, vibration analysis, or noise control can be beneficial in identifying and implementing effective solutions.

worm gear

Are there different types of worm gears available?

Yes, there are different types of worm gears available to suit various applications and requirements. Here are some of the commonly used types:

Single Enveloping Worm Gear:

The single enveloping worm gear, also known as a cylindrical worm gear, has cylindrical teeth on the worm wheel that mesh with the helical thread of the worm. The teeth of the worm wheel wrap around the worm in a single enveloping manner. This design provides better contact and load distribution, resulting in higher load-carrying capacity and smoother operation. Single enveloping worm gears are commonly used in heavy-duty applications where high torque transmission is required.

Double Enveloping Worm Gear:

The double enveloping worm gear is a specialized type of worm gear that provides even greater load-carrying capacity compared to the single enveloping design. In a double enveloping worm gear, both the worm and the worm wheel have curved tooth profiles. The teeth of the worm wrap around the worm wheel while the teeth of the worm wheel wrap around the worm. This double enveloping action increases the contact area, improves load distribution, and enhances the gear’s efficiency. Double enveloping worm gears are used in applications that demand high torque and precision, such as aerospace and defense industries.

Non-enveloping Worm Gear:

The non-enveloping worm gear, also known as a non-throated worm gear, has a worm wheel with teeth that do not fully wrap around the worm. Instead, the worm wheel has straight or slightly curved teeth that engage with the helical thread of the worm. Non-enveloping worm gears are simpler in design and less expensive to manufacture compared to enveloping worm gears. They are commonly used in applications with moderate loads and where cost is a consideration.

Self-locking Worm Gear:

Self-locking worm gears are designed with a specific helix angle of the worm’s thread to provide a self-locking effect. This means that when the worm is not actively driving the worm wheel, the worm wheel is prevented from rotating backward and can hold its position securely. Self-locking worm gears find applications in systems where holding position or preventing backdriving is crucial, such as elevators, lifts, and certain industrial machinery.

These are just a few examples of the different types of worm gears available. The choice of worm gear type depends on factors such as the application requirements, load capacity, efficiency, and cost considerations.

China manufacturer Worm Gears 9 Inch Used for Truck Cranes Construction Machinery manufacturer China manufacturer Worm Gears 9 Inch Used for Truck Cranes Construction Machinery manufacturer
editor by CX 2023-10-30

Leave a Reply

Your email address will not be published. Required fields are marked *